MACA TO 1. 55401

## **EXCITATION OF ATOMIC HYDROGEN BY PROTONS**

| <b>N66</b> -183               | 95         |
|-------------------------------|------------|
| (ACCESSION NUMBER)            | (THRU)     |
| TM x 55401                    | 24 (CODE)  |
| (NASA CR OR TMX OR AD NUMBÉR) | (CATEGORY) |

IAN M. CHESHIRE **EDWARD C. SULLIVAN** 

| GPO PRICE \$_       |       |
|---------------------|-------|
| CFSTI PRICE(S) \$ _ |       |
|                     | 1.00  |
| Hard copy (HC)      | 7700  |
| Microfiche (MF) _   | ~ ( ) |

ff 653 July 65

**NOVEMBER 1965** 



**GODDARD SPACE FLIGHT CENTER-**GREENBELT, MARYLAND

Excitation of Atomic Hydrogen by Protons

bу

Ian M. Cheshire and Edward C. Sullivan
Laboratory for Theoretical Studies
Goddard Space Flight Center, Greenbelt, Maryland

## ABSTRACT

S - state excitation cross sections for proton-hydrogen atom collisions are calculated by a non-adiabatic method.

· In.this letter we consider excitation of hydrogen atoms according to reactions of the type.

$$p + H(1s) \rightarrow p + H(ns) \tag{1}$$

using a generalization of the nonadiabatic theory of Temkin (1). Let  $\underline{r}$  and  $\underline{R}$  be the position vectors of the electron and incident proton relative to the (stationary) target proton. Above a few keV we may safely apply the impact parameter method which allows us to take  $\underline{R} = \underline{\rho} + \underline{v}t$  where  $\underline{v}$  is the velocity of the incident proton and t is the time chosen such that at t = 0 the protons have a minimum separation,  $\underline{\rho}$ . The electronic wave function  $\underline{v}(\underline{r},t)$  satisfies the time-dependent Schroedinger equation (in atomic units)

$$\{\frac{1}{2} \nabla^2 + i \frac{1}{\delta t} + \frac{1}{r} + \frac{1}{|r-R|} - \frac{1}{R} \} \Upsilon (r,t) = 0$$
 (2)

We have retained the interproton potential so that at large separations the perturbation tends rapidly to zero.

Since we are here interested only in the excitation of s-states is a natural to approximate  $\Psi$  by

$$\Psi \simeq \frac{1}{r} \overline{\Psi} (r,t) = \frac{1}{r} (\sum_{n} + \int d\mathbf{k}) d_n(t) R_{ns}(r) \exp(-i\epsilon_n t) (3)$$

where  $\frac{1}{7}R_{ns}(7)$  is the normalised hydrogenic s-state with principal quantum number n and binding energy  $\epsilon_n$ . Substituting (3) in (2) and integrating over the angular variables gives

$$\left\{ \frac{1}{2} \frac{3^{2}}{3r^{2}} + i \frac{3}{3t} + \frac{1}{r} + V(r,t) \right\} \Phi (r,t) = 0$$
 (4)

where

Equation (4) must be solved subject to the boundary conditions

$$\lim_{r \to \infty} \overline{\Phi}(r,t) = \lim_{r \to \infty} \overline{\Phi}(r,t) = 0 \tag{6}$$

and for a hydrogen atom initially in the 1s state we must also have

$$L_{t\rightarrow -\infty}^{im} \left\{ e^{i\epsilon_{is}t} \Phi(r,t) \right\} = R_{is}(r) \tag{7}$$

The problem defined above for  $\Phi(\mathbf{r},\mathbf{t})$  closely resembles the zeroth order problem of Temkin's nonadiabatic theory. As in Temkin's application, equation (4) has a clear physical interpretation. Initially the electron sees only the charge of the target proton. However, when the electron cloud is penetrated by the incident proton, the electron sees a doubly charged nucleus. Thus a temporary helium atom is formed which decays as the moving proton emerges from the electron cloud.

The excitation emplitudes  $\alpha_n(t)$  can be obtained directly from equation

(3) 
$$\alpha_{n}(t) = e^{i\varepsilon_{n}t} \int_{0}^{\infty} R_{ns}(t) \underline{\Phi}(t,t) dt \qquad (8)$$

or, by making use of equation (4) they can be written in the integral form

$$\alpha_{n}(t) = \delta_{n} + i \int_{-\infty}^{t} dt' \, e^{i\epsilon_{n}t'} \int_{R(t')}^{\infty} R_{ns}(r) \, V(r,t') \, \overline{\Phi}(r,t') \, dr \quad (9)$$

The boundary conditions at infinity, (6) and (7), are awkward to handle numerically and it was found more convenient to make the transformations

$$\overline{\Phi} = \overline{e}^{;\epsilon_{is}t} \chi \quad \gamma = tan'(\frac{vt}{p}), \quad \xi = tan'(\tau) \tag{10}$$
thus placing the entire problem within a box  $-\frac{\pi}{2} \leqslant \gamma \leqslant \frac{\pi}{2}$ ,  $0 \leqslant \xi \leqslant \frac{\pi}{2}$ .

The boundary conditions on x may now be simply stated

$$\chi(\xi^{-\frac{\pi}{2}}) = 2 \tan(\xi) \exp(-\tan \xi) \tag{11}$$

$$\chi(0,Y) = \chi(\frac{\pi}{2},Y) = 0 \tag{12}$$

The finite (central) difference equation corresponding to (4) is

$$A_{\mathbf{X}} = \mathbf{K} \tag{13}$$

where A is a tri-diagonal complex matrix,  $\chi$  is a column vector representing the solution at some value of  $\tau$  and K depends on previous values of  $\tau$ . Using a non-itterative technique developed by one of us (E. S.) (2) equation (13) may be directly inverted and  $\chi(\xi, \chi)$  obtained from a knowledge of  $\chi(\xi, \chi)$ . Since the initial condition at  $\chi=-\frac{\pi}{2}$  is given by (11) we can develope a numerical solution over the entire region  $-\frac{\pi}{2} \leqslant \chi \leqslant \frac{\pi}{2}$ . Calculations were performed on the Laboratory's IBM 7094/7040 using a 400 x 400 point mesh on the  $\xi, \chi$  plane. The unitarity requirement

$$\int_{0}^{\pi_{\chi_{2}}} |\chi(\xi, Y)|^{2} \sec^{2} \xi d\xi$$
(14)

was confirmed to a very high degree of accuracy except for values of  $\tau$  close to  $\Pi/2$  where it was occasionally violated by as much as 2%. This was due to an accumulated instability in X which greatly inhibited the convergence of the excitation probabilities  $\left| \mathcal{A}_{N}(Y) \right|^{2}$  when computed using equation (8). However, the instability had an insignificant effect on the values of  $\left| \mathcal{A}_{N}(t) \right|^{2}$  computed from (9) which depends on the entire history of X rather than upon its instantaneous value.

The excitation cross sections, computed from

Q (15,n) = 
$$2\int_{0}^{\infty} g dg \left| \alpha_{n} (Y=W_{z}) \right|^{2}$$
 (15)

using the  $d_n(\sqrt[m]{z})$ 

obtained from (9) are given in the table.

 $\textbf{Q}_{\mathbf{I}}$  corresponds to the s-wave contribution to the ionization cross section and was computed from

$$Q_{I} = 2 \int_{0}^{\infty} g dg \left\{ \left( -\sum_{n=1}^{\infty} |\alpha_{n}(\pi_{I_{2}})|^{2} \right) \right\}$$
 (16)

where the complete sum was formed by extrapolating the computed results above n = 7.

- 1. A. Temkin, Phys. Rev. 126, 130 (1962)
- 2. A. Temkin and E. C. Sullivan, NASA Technical Note D-1702 (unpublished)

| •     |      | Excitation | Cross S          | ections in U | inits of (Ta | $(n^3)$ |
|-------|------|------------|------------------|--------------|--------------|---------|
| (kev) |      |            |                  |              | •            |         |
| n     | 25   | 50         | 100              | 200          | 400          | 800     |
| 2     | 1.68 | 1.17       | .716             | •395         | <b>.</b> 209 | .108    |
| 3     | 1.22 | .827       | .521             | •269         | .141         | .0725   |
| 4     | 1.10 | •741       | •445             | .238         | .125         | •0639   |
| 5     | 1.05 | .705       | .412             | •225         | .118         | .0604   |
| 6     | 1.03 | .687       | .402             | .219         | .114         | .0587   |
| 7     | 1.01 | .676       | ·39 <sup>4</sup> | .215         | .113         | .0576   |

.133

.269

 ${^{\rm Q}}_{\rm I}$ 

.222

.0718

.0370

.0188